CTI Summit 2017 Road to CTI Summit 2017: Dahsyatnya Machine Learning

Road to CTI Summit 2017: Dahsyatnya Machine Learning

Membedakan foto sepatu dan baju adalah sebuah pekerjaan yang sangat mudah dilakukan manusia. Namun bagaimana jika ada jutaan foto yang harus disortir?

Masalah seperti ini benar dialami oleh Lazada. Setiap produk yang dipampang di platform mereka harus diperiksa dan diverifikasi. “Apakah kualitas fotonya bagus? Apakah nama produknya akurat? Setelah itu, kami harus menempatkannya di kategori produk yang tepat,” cerita John Berns (SVP Head of Data Science, Lazada).

Awalnya, Lazada melakukan proses tersebut secara manual oleh manusia. Namun mengingat setiap tahun ada 30 juta foto yang harus diolah, proses manual tersebut menuntut waktu dan tenaga yang tak sedikit. Hal inilah yang mendorong Lazada untuk membangun sistem berbasis teknologi machine learning.

“Sistem ini bisa melihat gambar, menganalisis, lalu menaruhnya di kategori yang tepat,” kata Berns. Ketika dilakukan secara manual, proses verifikasi biasanya berlangsung 30 detik Namun ketika menggunakan sistem berbasis machine learning, waktu yang dibutuhkan hanya sekitar 5-6 detik.

Akurasi sistem tersebut juga bisa diandalkan. “Sekitar 90% produk dapat diklasifikasikan berdasarkan machine learning, sementara sisanya masuk ke dalam suggestion untuk diproses secara manual,” tambah Berns.

Implementasi Luas

Machine learning sendiri adalah salah satu cabang ilmu komputer yang memiliki kemampuan belajar dari pola data, baik yang diberikan sebelumnya maupun data baru. Machine learning erat kaitannya dengan computational computing karena mengandalkan pola statistik dari data yang ia proses. Seperti contoh di atas, sistem machine learning Lazada bisa mengenali foto sebuah baju karena ia mengenali ciri-ciri baju dari jutaan foto baju yang telah ia proses.

Teknologi machine learning sebenarnya bukan hal yang baru. Pada tahun 1960, Joseph Weizenbaum membuat komputer bernama Eliza yang mengambil pendekatan machine learning. Namun implementasi machine learningmendapat momentumnya dalam beberapa tahun terakhir karena ekosistem yang mendukung. Contohnya peningkatan kecepatan komputasi yang bisa memproses data ukuran raksasa dengan lebih cepat. Selain itu, algoritma machine learning juga kian matang seiring kian seriusnya perusahaan teknologi raksasa, seperti Google, Microsoft, dan Amazon, dalam mengimplementasikan machine learning.

Perusahaan dari berbagai industri pun kini mulai melirik machine learning sebagai competitive advantage. Survei yang dilakukan MIT terhadap 168 perusahaan dengan pendapatan di atas US$500 juta menunjukkan, 76% responden telah menggunakan aplikasi berbasis machine learning untuk mengejar kenaikan pendapatan.

Sementara lembaga survei McKinsey menyebut, lebih dari selusin bank di Eropa telah mengganti sistem statistik yang biasa mereka gunakan dengan sistem baru berbasis machine learning. Hasilnya pun sangat positif. Bank yang telah menggunakan machine learning ini berhasil meningkatkan pendapatan 10% terhadap produk baru, serta penurunan churn (angka nasabah yang berhenti menggunakan jasa keuangan) sampai 20%.

Hal ini bisa dicapai karena sistem berbasia machine learning bisa memberikan rekomendasi yang lebih presisi dalam menawarkan produk baru maupun mendeteksi nasabah yang akan berhenti. Dalam konteks yang lebih luas, machine learning juga bisa digunakan untuk memprediksi potensi fraud, meningkatkan layanan masyarakat dan kesehatan, serta memperbaiki pola pelatihan olahraga.

Pendek kata, machine learning adalah tools yang akan membantu tiap perusahaan dalam meningkatkan kinerja mereka. Pertanyaan besarnya, apakah perusahaan Anda siap mengimplementasikannya?

Ingin tahu lebih banyak bagaimana machine learning bisa membantu perusahaan Anda?

Anda ingin tahu lebih banyak bagaimana machine learning bisa membantu perusahaan Anda? Anda bisa mengikuti CTI IT Infrastructure Summit yang akan diselenggarakan pada 8 Maret 2017. Pada acara yang bertajuk “Machine Learning: Capitalizing the Information of Everything to Drive Your Digital Business”, narasumber dari berbagai industri akan berbagi strategi mereka dalam mengimplementasikan machine learning.

Segera daftarkan diri Anda di http://www.itinfrastructuresummit.com/preregister mengingat tempat yang terbatas.